Some uses of metric entropy in on-line learning

Vladimir Vovk

Computer Learning Research Centre
Department of Computer Science
Royal Holloway, University of London
Egham, Surrey, England

vovk@cs.rhul.ac.uk

Edinburgh, September 12, 2006
Plan for this talk (maybe overoptimistic):

- Competitive on-line prediction as strand of learning theory
- Universal prediction strategies
- We need more than universal strategies: competing with dense benchmark classes
- The method of metric entropy
- Its limitations and other methods
- Functional modelling
On-line prediction protocol

The square-loss regression:

\[
\text{FOR } n = 1, 2, \ldots :
\]
\[
\text{Reality announces } x_n \in X.
\]
\[
\text{Predictor announces } \mu_n \in \mathbb{R}.
\]
\[
\text{Reality announces } y_n \in [-Y, Y].
\]
\[
\text{END FOR.}
\]

\(x_n\): signal (the data relevant for predicting \(y_n\), perhaps including some of the previous \(y_{n-1}, y_{n-2}, \ldots\))

\(y_n\): observation

\(Y := 1\) (general case: scaling)
Example

y_n: (high) temperature in Edinburgh on day n

x_n: the data available when the prediction is made

- Our prediction protocol: on-line.
- It is perfect-information: like chess.

How is it related to Prof Temlyakov’s talk?
The other strand of learning theory represented at this workshop: statistical learning theory.

Its basic set-up is **batch**: you are given a training set, and the goal is to come up with a good prediction rule \(F : \mathbf{X} \rightarrow \mathbb{R} \).

It makes the **i.i.d. assumption**:

\((x_n, y_n)\) are generated independently from the same distribution
Goals of learning

Statistical learning theory: come up with a prediction rule F with a small expected loss.

“Expected”: w.r. to the true probability measure generating the signals and observations.

Competitive on-line learning (universal prediction of individual sequences):

- no stochastic assumptions at all
- the goal is a good actual (not expected) performance (no measure \therefore no expectation)
Predictor’s goal in competitive on-line prediction

We want Predictor to achieve

\[
\frac{1}{N} \sum_{n=1}^{N} (y_n - \mu_n)^2 \approx \frac{1}{N} \sum_{n=1}^{N} (y_n - F(x_n))^2
\]

for all \(N = 1, 2, \ldots \) and all \(F \in \mathcal{F} \), for a large function class \(\mathcal{F} \).
Universal prediction strategies

There is a strategy for Predictor that asymptotically dominates every continuous prediction rule:

Theorem 1 Let X be a metric compact. There exists a strategy for Predictor that guarantees

$$\limsup_{N \to \infty} \left(\frac{1}{N} \sum_{n=1}^{N} (y_n - \mu_n)^2 - \frac{1}{N} \sum_{n=1}^{N} (y_n - F(x_n))^2 \right) \leq 0$$

for each continuous prediction rule F.
Aggregation of prediction strategies

Lemma Let F_1, F_2, \ldots be a sequence of prediction rules assigned positive weights w_1, w_2, \ldots summing to 1. There is a strategy for Predictor producing $\mu_n \in [-1, 1]$ that are guaranteed to satisfy, for all $N = 1, 2, \ldots$ and all $i = 1, 2, \ldots$,

$$
\sum_{n=1}^{N} (y_n - \mu_n)^2 \leq \sum_{n=1}^{N} (y_n - F_i(x_n))^2 + 8 \ln \frac{1}{w_i}.
$$

- you can aggregate any strategies, not just prediction rules
- this is true for a wide class of loss functions
- 8 can be replaced by 2, but the algorithm would be slightly more complicated
Proof sketch

The algorithm maintains the weights $p_{i,n}$ for the prediction rules F_i; $w_i = p_{i,0}$ are the initial weights.

At each step the weights are updated

$$p_{i,n} \propto p_{i,n-1} e^{-\eta(y_n-F(x_n))^2}$$

(always sum to 1) and Predictor’s prediction is computed as the weighted average

$$\mu_n := \sum_{i=1}^{\infty} p_{i,n} F_i(x_n).$$

I will call this strategy the mixture of F_i (more generally, of a sequence of prediction strategies).
Proof sketch of Theorem 1

Since $C(X)$ is separable, we can mix a dense sequence of $F_i \in C(X)$.
Inequalities instead of asymptotics

If \(\mathcal{F} \) is a suitable benchmark class (Banach space, not as big as \(C(\mathbf{X}) \)), Predictor can guarantee

\[
\sum_{n=1}^{N} (y_n - \mu_n)^2 \leq \sum_{n=1}^{N} (y_n - F(x_n))^2 + g(\|F\|_{\mathcal{F}}, N)
\]

for all \(F \in \mathcal{F} \) and \(N = 1, 2, \ldots \).

The regret term \(g(\|F\|_{\mathcal{F}}, N) \) must be \(o(N) \) (and not grow too fast with \(\|F\|_{\mathcal{F}} \)).
Metric entropy

Let A be a compact metric space. The metric entropy $\mathcal{H}_\varepsilon(A)$, $\varepsilon > 0$, is the binary logarithm $\log K$ of the minimum number of elements $F_1, \ldots, F_K \in A$ that form an ε-net for A.

Nowadays: entropy numbers appear more popular.

Kolmogorov and Tikhomirov 1959 (KT59): 4 main variations on the notion of metric entropy,

$$\mathcal{E}_{2\varepsilon}(A) \leq \mathcal{H}_\varepsilon^{\text{abs}}(A) \leq \mathcal{H}_\varepsilon^{R}(A) \leq \mathcal{H}_\varepsilon(A) \leq \mathcal{E}_\varepsilon(A).$$
Four types of metric compacts

$U_\mathcal{F}$: unit ball in \mathcal{F}

KT59 classification and the corresponding regret terms:

(I) finite dimensional function classes \mathcal{F}:

$$\mathcal{H}_\epsilon(U_\mathcal{F}) = O \left(\log \frac{1}{\epsilon} \right);$$

$$\sum_{n=1}^{N} (y_n - \mu_n)^2 \leq \sum_{n=1}^{N} (y_n - F(x_n))^2 + O(\log N);$$
(II) typical classes \mathcal{F} of analytic functions of m variables:

$$\mathcal{H}_\epsilon(U_\mathcal{F}) = O\left(\log^{m+1} \frac{1}{\epsilon}\right);$$

$$\sum_{n=1}^{N} (y_n - \mu_n)^2 \leq \sum_{n=1}^{N} (y_n - F(x_n))^2 + O(\log^{m+1} N);$$

(III) typical classes \mathcal{F} of functions of m real variables with “smoothness indicator” s:

$$\mathcal{H}_\epsilon(U_\mathcal{F}) = O\left(\left(\frac{1}{\epsilon}\right)^{m/s}\right);$$

$$\sum_{n=1}^{N} (y_n - \mu_n)^2 \leq \sum_{n=1}^{N} (y_n - F(x_n))^2 + O\left(N^{\frac{m}{m+s}}\right);$$
(IV) for classes \mathcal{F} of Lipschitzian functionals on classes of type III (such \mathcal{F} are representative of type IV):

$$\mathcal{H}_\epsilon(U_{\mathcal{F}}) = O\left(C(1/\epsilon)^{m/s}\right);$$

$$\sum_{n=1}^{N} (y_n - \mu_n)^2 \leq \sum_{n=1}^{N} (y_n - F(x_n))^2 + O\left(N/\log^{s/m} N\right).$$
State of the art

Regret terms known in competitive on-line prediction (to my knowledge): only types I and III.

Namely:
- $O(N^{1/2})$: Cesa-Bianchi, Long, Warmuth, . . . , starting from 1996, for Hilbert spaces (not always explicit);
- $O(\log N)$: V., Azoury, Warmuth, . . . , starting from 1998, for linear regression (precursor: Foster, 1991);
- $O(N^{1-1/p})$, $p \geq 2$: V., COLT’2006 (June), for Banach spaces that are as convex as L_p (such as $B^s_{p,q}$, $\frac{p}{p-1} \leq q \leq p$: Cobos & Edmunds, 1988).

Now we have the whole spectrum.
Compact benchmark classes

Theorem 2 Suppose \mathcal{F} is a compact set in $C(X)$. There exists a strategy for Predictor that produces μ_n with $|\mu_n| \leq 1$ and guarantees, for all $N = 1, 2, \ldots$ and all $F \in \mathcal{F}$,

$$\sum_{n=1}^{N} (y_n - \mu_n)^2 \leq \sum_{n=1}^{N} (y_n - F(x_n))^2$$

$$+ C \inf_{\epsilon \in (0,1/2]} \left(\mathcal{H}_\epsilon(\mathcal{F}) + \log \log \frac{1}{\epsilon} + \epsilon N + 1 \right),$$

where C is a universal constant.
Proof sketch

- Consider only ϵ of the form 2^{-i}, $i = 1, 2, \ldots$.
- Fix, for each i, a 2^{-i}-net \mathcal{F}_i for \mathcal{F} of size $2^{\mathcal{H}_{2^{-i}}(\mathcal{F})}$.
- To each element of \mathcal{F}_i assign weight $\propto i^{-2}2^{-\mathcal{H}_{2^{-i}}(\mathcal{F})}$.
- Mix all these prediction rules.
Banach function spaces as benchmark classes

A Banach space \mathcal{F} is compactly embedded into $C(X)$ if $U_{\mathcal{F}}$ is a compact subset of $C(X)$.

Theorem 3 Let \mathcal{F} be a Banach space compactly embedded in $C(X)$. There exists a strategy for Predictor that produces μ_n with $|\mu_n| \leq 1$ and guarantees, for all $N = 1, 2, \ldots$ and all $F \in \mathcal{F}$,

$$\sum_{n=1}^{N} (y_n - \mu_n)^2 \leq \sum_{n=1}^{N} (y_n - F(x_n))^2 + C \inf_{\epsilon \in (0,1/2]} \left(\mathcal{H}_{\epsilon/\phi}(U_{\mathcal{F}}) + \log \log \frac{1}{\epsilon} + \log \log \phi + \epsilon N + 1 \right),$$

where C' is a universal constant and $\phi := 2 \max(1, \|F\|_{\mathcal{F}})$.

20
Proof sketch

• Notice that $\mathcal{H}_\epsilon(2^i U_F) = \mathcal{H}_{2^{-i}\epsilon}(U_F)$, $i = 1, 2, \ldots$.

• Apply Theorem 2 to $\mathcal{F} := 2^i U_F$, assigning weight $\propto i^{-2}$ to the corresponding prediction strategy.

• Mix these strategies.
Competing with the continuous prediction rules

Let \(\mathcal{F} \subseteq C(X) \) be a Banach function space dense in \(C(X) \) (densely embedded in \(C(X) \)). The approachability of \(F \in C(X) \) by \(\mathcal{F} \) is

\[
\mathcal{A}_\epsilon^\mathcal{F}(F) := \inf \left\{ \| F^* \|_{\mathcal{F}} \mid \| F - F^* \|_{C(X)} \leq \epsilon \right\}, \quad \epsilon > 0
\]

(finite under our assumption of density).

[equivalent ways of talking about \(\mathcal{A} \): Gagliardo diagram, K norm, ...]
Theorem 4 Let \mathcal{F} be a Banach function space compactly and densely embedded in $C(X)$. Theorem 3's strategy guarantees, for all $N = 1, 2, \ldots$ and $F \in C(X)$,

$$
\sum_{n=1}^{N} (y_n - \mu_n)^2 \leq \sum_{n=1}^{N} (y_n - F(x_n))^2
$$

$$
+ C \inf_{\epsilon \in (0, 1/2]} \left(\mathcal{H}_{\epsilon/A(\epsilon)}(U_F) + \log \log \frac{1}{\epsilon} + \log \log A(\epsilon) + \epsilon N + 1 \right),
$$

where C is a universal constant and $A(\epsilon) := 2 \max(1, A_{\epsilon}(F))$.

Proof: immediate from Theorem 3.
Theorem 4: source of many universal prediction strategies.

Many Banach spaces of types II and III are compactly and densely embedded in $C(X)$.

Given any Banach space compactly and densely embedded in $C(X)$ Theorem 4 produces a universal prediction strategy.
Example 1 of type II class

Let K be a simply connected continuum in \mathbb{C} containing more than one point and G be a connected open set such that $K \subseteq G \subseteq \mathbb{C}$.

A^K_G: the set of all complex-valued functions on K that admit a bounded analytic continuation to G.

The norm:

$$\|f|_K\|_{A^K_G} := \sup_{z \in G} |f(z)|,$$

where $f : G \rightarrow \mathbb{C}$ ranges over the bounded analytic functions.
Example 1 cont.

\[\mathcal{H}_\varepsilon \left(U_{A^K_G} \right) \sim \tau(G, K) \log^2 \frac{1}{\varepsilon} \]

(KT59; hypothesised by Kolmogorov and proved independently by Babenko and Erokhin).

Theorem 3 gives:

\[
\sum_{n=1}^{N} (y_n - \mu_n)^2 \leq \sum_{n=1}^{N} (y_n - F(x_n))^2 + C\tau(G, K) \log^2 N
\]

for all real-valued \(F \in A^K_G \) and from some \(N \) on, where \(C \) is a universal constant.

Vitushkin: \(\tau(G, K) = 1/(2 \log \lambda) \) if \(K = [-1, 1] \) and \(G \) is the ellipse \(E_\lambda \) with the sum of semi-axes equal to \(\lambda > 1 \) and with foci at the points \(\pm 1 \).
Example 2 of type II class

Let $h > 0$.

A_h: the vector space of all periodic period 2π complex-valued functions on the real line \mathbb{R} that admit a bounded analytic continuation to the strip $\{z \in \mathbb{C} | |\Im z| < h\}$

The norm:

$$\|f\|_{A_h} := \sup_{z:|\Im z|<h} |f(z)|,$$

where f ranges over the bounded analytic functions on $\{z | |\Im z| < h\}$.
Example 2 cont.

\[\mathcal{H}_\epsilon(U_{A_h}) \sim \frac{2}{h \log e} \log^2 \frac{1}{\epsilon} \]

(KT59, Vitushkin).

Theorem 3 now gives

\[
\sum_{n=1}^{N} (y_n - \mu_n)^2 \leq \sum_{n=1}^{N} (y_n - F(x_n))^2 + \frac{C}{h} \log^2 N
\]

for all real-valued \(F \in A_h \) and from some \(N \) on, where \(C \) is a universal constant.

Both \(A_h \) and \(A_{E,\lambda}^{[-1,1]} \) are dense, and so give rise to universal prediction strategies.
Example 1 of type III spaces

Suppose X is a subset of Euclidean space, $X \subseteq \mathbb{R}^m$, which is a minimally regular domain (bounded and coincides with the interior of its closure).

Every $B_{p,q}^s(X)$ with $s > m/p$ is compactly embedded in $C(X)$. Edmunds and Triebel’s (1996) general result implies

$$\mathcal{H}_\epsilon \left(U_{B_{p,q}^s(X)} \right) \asymp (1/\epsilon)^{m/s}$$

(where $U_{B_{p,q}^s(X)}$ is considered a subset of $C(X)$).

[The same as in Prof Triebel’s talk!]
Example 1 cont.

Theorem 3 then shows that

\[\sum_{n=1}^{N} (y_n - \mu_n)^2 \leq \sum_{n=1}^{N} (y_n - F(x_n))^2 \]

\[+ C_{X,s,p,q} \left(\|F\|_{B_{p,q}^s(X)} + 1 \right)^{\frac{m}{m+s}} N^{\frac{m}{m+s}} \]

for all \(F \in B_{p,q}^s(X) \) from some \(N \) on.

Cucker & Smale 2002 obtain the rate \(N^{\frac{m}{m+s}} \) for \(H^s(X) \) under the i.i.d. assumption ((5) with \(\delta := 1 \)).
Example 2 (type 2.5?): smooth RKHS

Cucker and Smale (2001): if \mathcal{F} is an RKHS with a C^∞ reproducing kernel on \mathbb{R}^2 for a compact set \mathbb{R}^m,

$$\mathcal{H}_\epsilon(U_\mathcal{F}) = O\left((1/\epsilon)^{2m/h}\right)$$

for an arbitrary $h > m$.

From Theorem 3: for an arbitrarily small $\delta > 0$,

$$\sum_{n=1}^{N} (y_n - \mu_n)^2 \leq \sum_{n=1}^{N} (y_n - F(x_n))^2 + N\delta$$

for all $F \in \mathcal{F}$ from some N on.

The regret term is worse than poly-log: the class of analytic functions is much narrower than that of infinitely differentiable functions.
Two limitations of the metric entropy method

- It gives prediction strategies that cannot be written in a closed form (and are not computationally efficient).
- It does not give optimal regret terms (at least for type III classes whose members are not very smooth): even exponents, not only constants.
Alternatives:

• apply the aggregating algorithm to F without “discretization”: weighted summation \rightarrow integration (continuous mixing)

• defensive forecasting (a new method originating in the game-theoretic foundations for probability)

• Gradient Descent and its versions, following the perturbed leader, etc.

The first tends to give the best constants; the second is almost as good. [Attention to constants in learning theory: perhaps impetus is coming from experimental machine learning.] Other methods: often computationally very efficient.
Comparisons with the method of “defensive forecasting”

Many of the Besov spaces $B_{p,q}^s(X)$ are “uniformly convex”.

Clarkson’s modulus of convexity:

$$\delta_U(\epsilon) := \inf_{u,v \in \partial U} \left(1 - \frac{\|u + v\|_V}{2} \right), \quad \epsilon \in (0, 2]$$

(we will be mostly interested in the small values of ϵ).

If a Banach space \mathcal{F} is continuously embedded in $C(X)$, the embedding constant is

$$c_\mathcal{F} := \sup_{F \in U_\mathcal{F}} \|F\|_{C(X)} < \infty.$$
Proposition (my COLT’2006 paper) Let \mathcal{F} be a Banach space continuously embedded in $C(\mathbf{X})$ and such that

$$\forall \epsilon \in (0, 2]: \delta_\mathcal{F}(\epsilon) \geq (\epsilon/2)^p/p$$

for some $p \in [2, \infty)$. There exists a strategy for Predictor producing μ_n that are guaranteed to satisfy

$$\sum_{n=1}^{N} (y_n - \mu_n)^2 \leq \sum_{n=1}^{N} (y_n - F(x_n))^2 + 40\sqrt{c_\mathcal{F}^2 + 1} (\|F\|_\mathcal{F} + 1) N^{1-1/p}$$

for all $N = 1, 2, \ldots$ and all $F \in \mathcal{F}$.

\mathcal{F} is not required to be compactly embedded in $C(\mathbf{X})$.

When $p = 2$: $40 \mapsto 2$; continuous mixing: $\sqrt{c_\mathcal{F}^2 + 1} \mapsto c_\mathcal{F}$ (optimal).
Convexity of Besov spaces

Clarkson (1936): for \(p \in [2, \infty) \),
\[
\delta_{L^p}(\epsilon) \geq 1 - (1 - (\epsilon/2)^p)^{1/p} \geq (\epsilon/2)^p/p.
\]

Extended to some other Besov spaces by Cobos and Edmunds (1988): the modulus of convexity of each \(B^s_{p,q}(\mathbb{R}^m) \), \(s \in \mathbb{R} \), \(p \in [2, \infty) \) and \(q \in [p/(p-1), p] \), also satisfies
\[
\delta_{B^s_{p,q}(\mathbb{R}^m)}(\epsilon) \geq 1 - (1 - (\epsilon/2)^p)^{1/p} ;
\]
easily extends to \(B^s_{p,q}(X) \).
Defensive forecasting for Besov spaces

Let $p \in [2, \infty)$, $q \in [p/(p - 1), p]$ and $s \in (m/p, \infty)$. There exist a constant $C_{X,s,p,q} > 0$ and a strategy for Predictor producing μ_n that are guaranteed to satisfy

$$\sum_{n=1}^{N} (y_n - \mu_n)^2 \leq \sum_{n=1}^{N} (y_n - F(x_n))^2 + C_{X,s,p,q} \left(\|F\|_{B_{p,q}^s} + 1 \right) N^{1 - 1/p}$$

for all $N = 1, 2, \ldots$ and all $F \in B_{p,q}^s(X)$.
Comparison for the Hölder–Zygmund spaces $C^s(X) := B_{\infty, \infty}^s(X)$

For $s = k + \alpha$, where k is integer and $\alpha \in (0, 1)$, $C^s(X)$ consists of the functions whose kth partial derivatives exist and are all Hölder continuous of order α.

Defensive forecasting works better than metric entropy at the “rough” end of the scale $C^s(X)$:
Suppose $s \in (0, m/2]$. The DF exponent $1 - 1/p$ of N can be taken arbitrarily close to $1 - s/m$, and we can see that it is then better than the ME exponent of N:

$$1 - \frac{s}{m} < \frac{m}{m + s}.$$

For example, if $m = 1$, $s \approx 1/2$ (typical trajectories of the Brownian motion are of this type) defensive forecasting gives approximately $N^{1/2}$ whereas metric entropy gives approximately $N^{2/3}$.
• Suppose $s \in (m/2, m)$. The DF exponent of N can always be taken as $1/2$, and it is still better than the ME exponent of N:

$$\frac{1}{2} < \frac{m}{m + s}.$$

• Suppose $s \in [m, \infty)$. A weakness of the method of defensive forecasting (in its current state) is that it cannot give regret terms better than $O(N^{1/2})$. Therefore, the method of metric entropy beats defensive forecasting for smooth $C^s(X)$, $s > m$.
Functional modelling

Competitive on-line prediction: statistical models \mapsto functional models (=benchmark classes)

What if we choose a “wrong” model?

It appears that: choosing a meagre (but dense in $C(X)$) class is safer than choosing a rich class.
Choosing a wrong class of type II

Lemma Let $0 < h < H < \infty$ and let $F \in A_h$. For small enough $\epsilon > 0$,

$$\log A_{\epsilon}^{A_H}(F) \leq C \frac{H}{h} \log \frac{1}{\epsilon},$$

where C is a universal constant.

Proof idea: Functions in A_h can be very well approximated in $C(X)$ by low-degree trigonometric polynomials (Akhiezer's theorem), whose A_H norm is not too large.
In combination with Theorem 4 this lemma gives:

Corollary Let $0 < h < H < \infty$. The strategy for Predictor constructed earlier for the benchmark class A_H guarantees

$$
\sum_{n=1}^{N} (y_n - \mu_n)^2 \leq \sum_{n=1}^{N} (y_n - F(x_n))^2 + C \frac{H^2}{h^3} \log^2 N
$$

for each $F \in A_h$ from some N on, where C is a universal constant.
Cost of using a wrong class

This is what happens with the regret term:

- if we use A_h instead of A_H (err on the side of caution):
 \[
 \frac{1}{H} \log^2 N \rightarrow \frac{1}{h} \log^2 N
 \]
 (lose a factor of H/h);

- if we use A_H instead of A_h (being too optimistic):
 \[
 \frac{1}{h} \log^2 N \rightarrow \frac{H^2}{h^3} \log^2 N
 \]
 (lose a factor of $(H/h)^2$).

It might be slightly better to be a pessimist (but not much difference).
Caveat (for the previous and following slides): I am talking about the available performance guarantees, which might not be optimal.
Choosing a wrong type

Conclusion: if you optimistically choose type II instead of type III, you might lose half of the smoothness \((s \mapsto s/2)\).

Lemma Let \(h > 0\) and let \(F : \mathbb{R} \rightarrow \mathbb{R}\) be a non-zero periodic function with period \(2\pi\) whose \(k\)th derivative \((k \in \{0, 1, \ldots\})\) exists and is Hölder continuous of order \(\alpha \in (0, 1]\) with coefficient \(c\). Set \(s := k + \alpha\). For small enough \(\epsilon > 0\),

\[
\log A_{\epsilon}^{A_h}(F) \leq C h \left(\frac{12c}{\epsilon}\right)^{1/s},
\]

where \(C\) is a universal constant.

Proof idea: use Jackson’s theorem instead of Akhiezer’s.
Combining with Theorem 4:

Corollary Let $F : \mathbb{R} \to \mathbb{R}$ be a periodic period 2π function whose kth derivative ($k \geq 0$) is Hölder continuous of order α with coefficient c. The strategy for Predictor constructed for the class A_h guarantees

$$\sum_{n=1}^{N} (y_n - \mu_n)^2 \leq \sum_{n=1}^{N} (y_n - F(x_n))^2 + Ch^{s/2}c_s^{1/2}N^{s/2}$$

from some N on, where $s := k + \alpha$ and C is a universal constant.

The growth rate $N^{2/(s+2)} = N^{1/(s/2+1)}$ of the regret term is worse than the rate $N^{1/(s+1)}$ obtained (using ME) for a prediction strategy designed specifically for functions with Hölder continuous derivatives.
Choosing a wrong class of type III

I will state two simple corollaries of

\[s_0 \neq s_1 \implies (B_{p,q_0}^{s_0}, B_{p,q_1}^{s_1})_{\theta,r} = B_{p,r}^{(1-\theta)s_0 + \theta s_1}, \]

for the Hölder–Zygmund spaces \(\mathcal{C}^s(X) := B_{\infty,\infty}^{s}(X) \).
Defensive forecasting bound

The regret term is of order, approximately,

$$\|F\|_{\mathcal{C}^s(X)} N^{1-s/m}$$

(1)

for the benchmark class $\mathcal{C}^s(X)$, $0 < s \leq m/2$, and of order

$$\|F\|_{\mathcal{C}^S(X)} N^{1-S/m}$$

(2)

for the benchmark class $\mathcal{C}^S(X)$, $0 < S \leq m/2$.

Let $s < S$. Achieving (2) automatically achieves (1) (ignoring constant factors).
Metric entropy bound

The regret terms are of order, approximately,

$$\|F\|_{\mathcal{C}^s(X)}^m N^{m+s}$$ \hspace{1cm} (1)

for the benchmark class $\mathcal{C}^s(X)$ and

$$\|F\|_{\mathcal{C}^S(X)}^m N^{m+S}$$ \hspace{1cm} (2)

for $\mathcal{C}^S(X)$, where $0 < s < S$.

Achieving (2) again automatically achieves (1) (ignoring constant factors).
Possible directions of further research

- Find computationally efficient prediction strategies for benchmark classes such as A^K_G and A_h (type II) and Besov spaces $B_{p,q}^s$ with $m/(m + s) < 1/2$.

- Extend the metric entropy method to discontinuous prediction rules.

- Complement the available performance guarantees with lower bounds.

- Study the “relation of domination” between various a priori plausible benchmark classes: e.g., some of them may turn out to be useless or nearly useless on purely theoretical grounds.
Full proofs for this talk

http://www.vovk.net (the front page)

Recent review of the field

Nicolò Cesa-Bianchi and Gábor Lugosi
Prediction, learning, and games
New York: Cambridge University Press, 2006