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(Communicated by Academician A. N. Kolmogorov, 25.01.1986)

This work belongs to algorithmic information theory (see [1]). Theorem 1
shows that if some sequence is random with respect to two computable measures
P and Q simultaneously, then these measures asymptotically agree in their
forecasts of the behaviour of this sequence. It turns out that in these terms one
can give a criterion of randomness with respect to a computable measure Q of
a sequence random with respect to a computable measure P (Theorem 3).

1. In this section we will give the main definitions and state some known
results of algorithmic information theory in a convenient for us form (a more
complete exposition can be found in the survey [2]).

Let X be an arbitrary ensemble in the sense of [3] (in a different terminology,
a space of constructive objects), fixed until the end of this note1. Denote by
X∞ the set of all infinite sequences ω = ω0ω1ω2 . . . of elements of the ensemble
X, and by X∗ the set of all finite sequences a = a0a1 . . . an−1 of elements of the
ensemble X; Λ ∈ X∗ is the empty sequence. For ω ∈ X∞, we denote by ωn the
sequence ω0ω1 . . . ωn−1 from X∗.

A function P : X∗ → [0,+∞[ is called a semimeasure if P (Λ) = 1 and
P (a) ≥

∑
x∈X P (ax) for all a ∈ X∗ (by ax we denote the sequence obtained

from a by adding another term x). The semimeasure P is called a measure if
P (a) =

∑
x∈X P (ax) for all a ∈ X∗.

We will consider recursively enumerable (r.e.) semimeasures, i.e., semimea-
sures for which the set {(r, a) | r ∈ Q, a ∈ X∗, r < P (a)} is r.e. (Q is the set of
all rational numbers). A computable semimeasure is an r.e. semimeasure such
that the set

{
(r, a) | r ∈ Q, a ∈ X∗, r >

∑
x∈X P (ax)

}
is also r.e. and the set

{a ∈ X∗ | P (a) = 0} is decidable. If P is a computable semimeasure, there is
an algorithm that computes P (a) and

∑
x∈X P (ax) for any a ∈ X∗ with any

degree of accuracy.
There exists an r.e. semimeasure M such that, for any r.e. semimeasure P ,

P (a) = M(a) · O(1), a ∈ X∗. Let us fix one of such semimeasures M—let us
call it the a priori semimeasure—and fix the notation M for it.

A sequence ω ∈ X∞ is called random in the sense of Martin-Löf (in what
follows the words “in the sense of Martin-Löf” will be omitted) with respect
to an r.e. semimeasure P if M(ωn) = P (ωn) · O(1). In the case when P is a
computable measure, this definition is equivalent to the original, very natural,
definition given by Martin-Löf. Martin-Löf’s definition requires that ω should
satisfy all “efficient” (in a certain exact sense) laws of probability theory.

If P is an r.e. semimeasure and a ∈ X∗, we call the value ln(M(a)/P (a))
the randomness deficiency of the sequence a with respect to P and denote it
d(a|P ). If ω ∈ X∞, the rate of growth of d(ωn |P ) as n →∞ reflects the “degree

1Examples of ensembles: the set of all natural numbers, the set of all finite binary sequences.
One can also take the set {0, 1} as X.
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of non-randomness” of ω with respect to P . The randomness of ω ∈ X∞ with
respect to P is equivalent to d(ωn | P ) = O(1).

2. A probability distribution is a function p : X → [0,+∞[ such that∑
x∈X p(x) ≤ 1. If p and q are probability distributions, the Hellinger dis-

tance ρ(q, p) between p and q is defined as
∑

x∈X

(√
q(x)−

√
p(x)

)2

, and the

χ2-distance, which we will denote ρ2(q, p), as2
∑

x∈X (q(x)− p(x))2 /q(x) (see
[4, p. 194]). A probability distribution p is proper if

∑
x∈X p(x) = 1.

The ratio P (ax)/P (a), where a ∈ X∗ and x ∈ X, will be denoted P (x | a).
Let P be a semimeasure and ω ∈ X∞. By Pω

n we will denote the probability
distribution such that Pω

n (x) = P (x | ωn) for all x ∈ X. If P is a measure and
P (ωn) 6= 0, the probability distribution Pω

n is proper.

Theorem 1. Let P and Q be computable semimeasures such that Q is a mea-
sure, and ω ∈ X∞. Then

n−1∑
i=0

ρ(Qω
i , Pω

i )− d(ωn | P )−O(1) ≤ d(ωn |Q)

≤
n−1∑
i=0

ρ2(Qω
i , Pω

i ) + 2d(ωn | P ) + O(1).

Proof. (a) Lower bound. Define an r.e. semimeasure R by

R(x | a) =

√
P (x | a)Q(x | a)∑

y∈X

√
P (y | a)Q(y | a)

,

where x ∈ X and a ∈ X∗. Being an r.e. semimeasure, R satisfies

R(ωn) = ed(ωn|P ) · P (ωn) ·O(1).

Without loss of generality we suppose P (ωn) 6= 0 and Q(ωn) 6= 0, ∀n.
Writing P (ωn) as

∏n−1
i=0 P (ωi | ωi), R(ωn) as

∏n−1
i=0 R(ωi | ωi), and R(ωi | ωi)

according to its definition, after cancellation we obtain

n−1∏
i=0

√
Q(ωi | ωi)/P (ωi | ωi)∑

y∈X

√
P (y | ωi)Q(y | ωi)

= ed(ωn|P ) ·O(1).

Noticing that
∏n−1

i=0

√
Q(ωi | ωi)/P (ωi | ωi) = e(d(ωn|P )−d(ωn|Q))/2 and taking

logarithms of both sides, it is easy to obtain

d(ωn | P ) + d(ωn |Q) ≥ −2
n−1∑
i=0

ln

∑
y∈X

√
P (y | ωi)Q(y | ωi)

−O(1).

2We set 0
0

:= 0 (and also ∞∞ := 0).
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The statement we are proving now follows from

2 ln

(∑
y∈X

√
P (y | ωi)Q(y | ωi)

)
≤ 2 ln

(
1− 1

2

∑
y∈X

(√
P (y | ωi)

−
√

Q(y | ωi)
)2
)
≤ −

∑
y∈X

(√
P (y | ωi)−

√
Q(y | ωi)

)2

.

(b) Upper bound. Let R be a semimeasure such that

R(a) 6= 0 =⇒ R(x | a) =
P 2(x | a)
Q(x | a)

/∑
y∈X

P 2(y | a)
Q(y | a)

for all x ∈ X, a ∈ X∗. Analogously to part (a) we obtain

d(ωn |Q)− 2d(ωn | P ) ≤
n−1∑
i=0

ln
∑
y∈X

P 2(y | ωi)
Q(y | ωi)

+ O(1).

After this it suffices to notice that

ln
∑
y∈X

P 2(y | ωi)
Q(y | ωi)

≤ ln

1 +
∑
y∈X

(P (y | ωi)−Q(y | ωi))2

Q(y | ωi)


≤
∑
y∈X

(P (y | ωi)−Q(y | ωi))2

Q(y | ωi)
.

It is easy to see that the assumption that Q is a measure was used only in
the proof of the upper bound.

Theorem 1 shows that if a sequence ω is random with respect to a computable
measure P and a computable measure Q is chosen so that d(ωn | Q) = o(n),
then the “mean Hellinger distance” 1

n

∑n−1
i=0 ρ(Qω

i , Pω
i ) → 0.

Theorem 2. Let P and Q be computable semimeasures, and let ω ∈ X∞ be
random with respect to both P and Q. Then

n−1∑
i=0

(
P (ωi | ωi)
Q(ωi | ωi)

− 1
)2

< ∞.

Proof. Define a computable semimeasure R by the formula

R(x | a) =
P (x | a) + Q(x | a)

2
for all x ∈ X, a ∈ X∗. The condition of the theorem immediately implies

n−1∏
i=0

R(ωi | ωi) =
n−1∏
i=0

P (ωi | ωi) ·O(1),

n−1∏
i=0

R(ωi | ωi) =
n−1∏
i=0

Q(ωi | ωi) ·O(1).
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Writing out R(ωi | ωi) according to its definition, we can obtain

n−1∏
i=0

1 + Q(ωi | ωi)/P (ωi | ωi)
2

= O(1),

n−1∏
i=0

1 + P (ωi | ωi)/Q(ωi | ωi)
2

= O(1).

Multiplying, we obtain

n−1∏
i=0

2 + P (ωi | ωi)/Q(ωi | ωi) + Q(ωi | ωi)/P (ωi | ωi)
4

= O(1).

Notice that each term of this product is ≥ 1. This immediately implies P (ωi |
ωi)/Q(ωi | ωi) → 1 as i →∞. The natural logarithm of the typical term of the
product is, asymptotically, (

P (ωi | ωi)
Q(ωi | ωi)

− 1
)2
/

4,

which immediately implies the conclusion of the theorem.

3. From Theorems 1 and 2 we will deduce the following criterion of random-
ness.

Theorem 3. Let P and Q be computable semimeasures such that Q is a mea-
sure, ω ∈ X∞ be random with respect to P , and Q(ωn) 6= 0, ∀n. Then

ω is random with respect to Q ⇐⇒
∞∑

i=0

ρ(Pω
i , Qω

i ) < ∞.

Proof. Theorem 1 implies that

n−1∑
i=0

ρ(Pω
i , Qω

i )−O(1) ≤ d(ωn |Q) ≤
n−1∑
i=0

ρ2(Qω
i , Pω

i ) + O(1).

The implication “=⇒” is obvious. Let us prove “⇐=”. Choose some computable
family {A(a) |a ∈ X∗} of subsets of the set X such that P (x |a)/Q(x |a) ≥ 2 for
x ∈ A(a) and P (x | a)/Q(x | a) ≤ 3 for x /∈ A(a). Define a computable measure
Q by the requirement that

Q(x | a) =

{
P (x | a)/2 if x ∈ A(a),
Q(x | a) · C(a) if x /∈ A(a),

for all x ∈ X and a ∈ X∗ such that Q(a) 6= 0, where the function C : X∗ → ]0, 1]
is chosen so that Q can indeed be a measure. Using the function C we define a
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semimeasure P by the equality P (x|a) = P (x|a)·C(a), ∀x ∈ X, a ∈ X∗. We will
consecutively prove that ω is random with respect to P , with respect to Q, and,
finally, with respect to Q. The proof will use the fact that ρ(p, q), where p and
q are probability distributions, is within a constant factor of

∑
x∈X

(p(x)−q(x))2

p(x)∨q(x)

(the symbol ∨ denotes the maximum of two numbers).
In order to prove the randomness of ω with respect to P it suffices to prove

that
∏∞

i=0 C(ωi) > 0. Let us use the convergence of the series

∞∑
i=0

∑
y∈X

(P (y | ωi)−Q(y | ωi))2

P (y | ωi) ∨Q(y | ωi)
.

Of course, the convergence will not be affected if
∑

y∈X is replaced by
∑

y∈A(ωi).
Therefore,

∑∞
i=0 P (A(ωi) |ωi) < ∞ (here we have used the notation R(B | a) =∑

y∈B R(y | a), where R is a semimeasure, B ⊆ X, a ∈ X∗). It remains to
notice that C(ωi) ≥ 1−P (A(ωi) | ωi)/2, and so − lnC(ωi) = O(P (A(ωi) | ωi)).
Therefore, ω is random with respect to P .

The already established convergence of the series
∑∞

i=0 P (A(ωi) | ωi) im-
plies the convergence of

∑∞
i=0 ρ2(Q

ω

i , P
ω

i ). In conjunction with Theorem 1 this
implies that ω is random with respect to Q.

To prove the randomness of ω with respect to Q it suffices to prove that
ωn ∈ A(ωn) only finitely often. If ωn ∈ A(ωn) were true for infinitely many n,
we would have Q(ωn | ωn) = P (ωn | ωn)/2 for infinitely many n, which would
contradict Theorem 2.

A related result—a criterion of absolute continuity and singularity of prob-
ability measures in “predictable” terms—has been obtained in probability the-
ory ([5]; see also [6, p. 516, Theorem 4]). In the case of the probability space
(X,P(X))∞, where P(X) is the set of all subsets of the set X, it is a simple
corollary of our criterion of randomness.
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This paper was published as

5
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Akademii Nauk SSSR, 294(6):1298–1302, 1987.

Another English translation (I have never seen it) appeared as

V. G. Vovk. On a randomness criterion. Soviet Mathematics Dok-
lady, 35(3):656–660, 1987.

In my translation I corrected one misprint. These are English translations of
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MA: Kluwer Academic Publishers, 1993.
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The theorem mentioned in the paper is Theorem 4 on p. 528 of the trans-
lation (Chapter VII, §6).
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